The effect of deterministic noise in subgradient methods
نویسندگان
چکیده
In this paper, we study the influence of noise on subgradient methods for convex constrained optimization. The noise may be due to various sources, and is manifested in inexact computation of the subgradients and function values. Assuming that the noise is deterministic and bounded, we discuss the convergence properties for two cases: the case where the constraint set is compact, and the case where this set need not be compact but the objective function has a sharp set of minima (for example the function is polyhedral). In both cases, using several different stepsize rules, we prove convergence to the optimal value within some tolerance that is given explicitly in terms of the errors. In the first case, the tolerance is nonzero, but in the second case, the optimal value can be obtained exactly, provided the size of the error in the subgradient computation is below some threshold. We then extend these results to objective functions that are the sum of a large number of convex functions, in which case an incremental subgradient method can be used. Mathematics Subject Classification (2000) 90C25 Research supported by NSF under Grant ACI-9873339. A. Nedić (B) Department of Industrial and Enterprise Systems Engineering, UIUC, Urbana, IL 61801, USA e-mail: [email protected] D. P. Bertsekas Department of Electrical Engineering and Computer Science, M.I.T., Cambridge, MA 02139, USA
منابع مشابه
The Effect of Deterministic Noise1 in Subgradient Methods
In this paper, we study the influence of noise on subgradient methods for convex constrained optimization. The noise may be due to various sources, and is manifested in inexact computation of the subgradients and function values. Assuming that the noise is deterministic and bounded, we discuss the convergence properties for two cases: the case where the constraint set is compact, and the case w...
متن کاملInexact subgradient methods for quasi-convex optimization problems
In this paper, we consider a generic inexact subgradient algorithm to solve a nondifferentiable quasi-convex constrained optimization problem. The inexactness stems from computation errors and noise, which come from practical considerations and applications. Assuming that the computational errors and noise are deterministic and bounded, we study the effect of the inexactness on the subgradient ...
متن کاملConvergence Rates for Deterministic and Stochastic Subgradient Methods Without Lipschitz Continuity
We extend the classic convergence rate theory for subgradient methods to apply to non-Lipschitz functions. For the deterministic projected subgradient method, we present a global O(1/ √ T ) convergence rate for any convex function which is locally Lipschitz around its minimizers. This approach is based on Shor’s classic subgradient analysis and implies generalizations of the standard convergenc...
متن کاملA new Levenberg-Marquardt approach based on Conjugate gradient structure for solving absolute value equations
In this paper, we present a new approach for solving absolute value equation (AVE) whichuse Levenberg-Marquardt method with conjugate subgradient structure. In conjugate subgradientmethods the new direction obtain by combining steepest descent direction and the previous di-rection which may not lead to good numerical results. Therefore, we replace the steepest descentdir...
متن کاملStochastic Subgradient MCMC Methods
Many Bayesian models involve continuous but non-differentiable log-posteriors, including the sparse Bayesian methods with a Laplace prior and the regularized Bayesian methods with maxmargin posterior regularization that acts like a likelihood term. In analogy to the popular stochastic subgradient methods for deterministic optimization, we present the stochastic subgradient MCMC for efficient po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 125 شماره
صفحات -
تاریخ انتشار 2010